Prediction of Spin Orientations in Terms of HOMO-LUMO Interactions Using Spin-Orbit Coupling as Perturbation.

نویسندگان

  • Myung-Hwan Whangbo
  • Elijah E Gordon
  • Hongjun Xiang
  • Hyun-Joo Koo
  • Changhoon Lee
چکیده

For most chemists and physicists, electron spin is merely a means needed to satisfy the Pauli principle in electronic structure description. However, the absolute orientations of spins in coordinate space can be crucial in understanding the magnetic properties of materials with unpaired electrons. At low temperature, the spins of a magnetic solid may undergo long-range magnetic ordering, which allows one to determine the directions and magnitudes of spin moments by neutron diffraction refinements. The preferred spin orientation of a magnetic ion can be predicted on the basis of density functional theory (DFT) calculations including electron correlation and spin-orbit coupling (SOC). However, most chemists and physicists are unaware of how the observed and/or calculated spin orientations are related to the local electronic structures of the magnetic ions. This is true even for most crystallographers who determine the directions and magnitudes of spin moments because, for them, they are merely the parameters needed for the diffraction refinements. The objective of this article is to provide a conceptual framework of thinking about and predicting the preferred spin orientation of a magnetic ion by examining the relationship between the spin orientation and the local electronic structure of the ion. In general, a magnetic ion M (i.e., an ion possessing unpaired spins) in a solid or a molecule is surrounded with main-group ligand atoms L to form an MLn polyhedron, where n is typically 4-6, and the d states of MLn are split because the antibonding interactions of the metal d orbitals with the p orbitals of the surrounding ligands L depend on the symmetries of the orbitals involved.1 The magnetic ion M of MLn has a certain preferred spin direction because its split d states interact among themselves under SOC.2,3 The preferred spin direction can be readily predicted on the basis of perturbation theory in which the SOC is taken as perturbation and the split d states as unperturbed states by inspecting the magnetic quantum numbers of its d orbitals present in the HOMO and LUMO of the MLn polyhedron. This is quite analogous to how chemists predict whether a chemical reaction is symmetry-allowed or symmetry-forbidden in terms of the HOMO-LUMO interactions by simply inspecting the symmetries of the frontier orbitals.4,5 Experimentally, the determination of the preferred spin orientations of magnetic ions requires a sophisticated level of experiments, for example, neutron diffraction measurements for magnetic solids with an ordered spin state at a very low temperature. Theoretically, it requires an elaborate level of electronic structure calculations, namely, DFT calculations including electron correlation and SOC. We show that the outcomes of such intricate experimental measurements and theoretical calculations can be predicted by a simple perturbation theory analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of electronic Structure of [CoF6]3" Complex embedded in Nano-Ring

Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for Bi8N18-[CoF6]3- complexhave been carried out to study the non-bonded interaction. The geometry of the 1313N18 has been optimized atB3LYP method with EPR-II basis set and geometry of the [CoF6]3 have been optimized at B3LYP method withDe12-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electr...

متن کامل

اثر برهم‌کنش اسپین‌ مدار یکنواخت و میدان مغناطیسی یکنواخت بر خواص توپولوژیکی یک نانو سیم یک بعدی کوانتومی

We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH) model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the h...

متن کامل

Theoretical study of - stacking interactions in substituted-coronene||cyclooctatetraene complexes: A system without direct electrostatic effects of substituents

Stability of the ;-; stacking interactions in the substituted-coronene||cyclooctatetraene complexes wasstudied using the computational quantum chemistry methods (where || denotes ;–; stackinginteraction, and substituted-coronene is coronene which substituted with four similar X groups; X =OH, SH, H, F, CN, and NO). There are meaningful correlations between changes of geometricalparameters and t...

متن کامل

بررسی خواص مغناطیسی تک اتم‌های فلزات واسط 3d افزوده شده بر روی بورن نیتراید شش گوشی دوبعدی

In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magne...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 48 12  شماره 

صفحات  -

تاریخ انتشار 2015